

CTV Design Specials

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Krista Miller

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

April, 2014

CTV Design Specials

By Krista Miller

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s

requirements for the degree of Master of Software Engineering in Computer Science. The

candidate has completed the oral examination requirement of the capstone project for the degree.

____________________________________ _______________________

Dr. Kenny Hunt Date

Examination Committee Chairperson

____________________________________ _______________________

Dr. Thomas Gendreau Date

Examination Committee Member

____________________________________ _______________________

Dr. Andrew Berns Date

Examination Committee Member

iii

Abstract

Miller, Krista, R., “CTV Design Specials”, Master of Software Engineering, May 2014,

Hunt, Kenny.

 The CTV Design Specials team at Trane in La Crosse, WI currently relies on a

series of whiteboards and manually created spreadsheets to track the design process of

special-order chillers. An electronic version of this system was created in order to make

data entry and reporting more efficient and robust. During the design process, the system

changed drastically and the decision was made to reengineer the entire system to improve

speed, usability, flexibility, and maintenance efforts.

 This manuscript describes the development of a more efficient, usable, and well-

written system to replace the current one. It focuses on the design process, decisions that

were made, challenges that arose, and comparisons between the new and old systems.

iv

Acknowledgements

I would like to thank my project advisor, Dr. Kenny Hunt, for his feedback and

guidance when it was needed. I would also like to thank all of the Computer Science

professors I’ve had the pleasure of learning from during my time at UW-L. I have

genuinely enjoyed learning from all of you over the last several years.

 I would also like to thank my project sponsors, Craig Ausrud and Matt Haas for

giving me the opportunity to work on this project. I would specifically like to thank

Craig for taking the time to help me understand the requirements well enough to use the

project for my capstone, even after we got the unfortunate news that the project would no

longer be used. I would also like to thank Matt for allowing me to work on the project

during work hours, again, even after we found out that the project wouldn’t be used. It

was a pleasure working with you during the time of my internship and I learned more

than I could have ever imagined. It is all being put to good use in my new role with the

company.

I would like to thank my parents for being the most amazing supporters I could have ever

asked for. Your constant encouragement and unconditional love has gotten me to where I

am today. I will never be able to express how thankful and blessed I am to have the two

of you to call “Mom” and “Dad”.

 Finally, I would like to thank my husband, Jeremy, for encouraging me when I

needed it. Thank your for your patience during my last semester, when I wasn’t able to

spend nearly as much time with you as I should have. Your support means more than

you can imagine and I’m not convinced that I could have done it without you by my side.

v

Table of Contents

Abstract .. iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures ... vii

List of Tables ... viii

Glossary ... ix

1. Introduction ... 1

1.1 Background of CTV Design Specials – The Process.. 1

1.2 Background of CTV Design Specials – The Software ... 2

1.3 Need for Reengineering .. 3

2. Software Lifecycle Models ... 5

2.1 Models Considered ... 5

2.2 Model Used - Waterfall .. 5

3. Functional Requirements .. 8

4. Design ... 12

4.1 Database .. 12

4.2 Class Structure .. 14

4.3 Reports .. 17

4.4 System Security .. 17

5. Implementation ... 19

6. Validation and Testing .. 20

7. Result of Reengineering .. 22

8. Conclusion .. 24

8.1 Challenges ... 24

vi

8.2 Future Work .. 25

9. Bibliography ... 27

Appendix A: GUI Before and After... 28

Appendix B: Internal Class Structure ... 53

vii

List of Figures

Figure 1: Waterfall Model ……………………………………………………………… 6

Figure 2: Functional Requirements ……………………………………………………..10

Figure 3: Entity Relationship Diagram …………………………………………………13

Figure 4: Class Diagram ………………………………………………………………..14

Figure 5: Order Class ……………………………………………………………...……15

Figure 6: Portion of Order Class Narrative ……………………………………………..16

Figure 7: Report Prioritize Records Screen – Before and After ………………………..19

viii

List of Tables

Table 1: Test Case for Gate 3 Status Changes for Change in Shear Date 21

ix

Glossary

Agile

A software development methodology that emphasizes close collaboration between the

programming team and business experts and frequent delivery of new deployable

software.

Approval

A portion of design that must be approved before an order can move to the next

stage/gate.

Business Layer

Part of a program that encodes the real-world business rules that determine how data can

be created, displayed, stored, and changed.

C#

A simple, modern, object-oriented programming developed by Microsoft. It was

originally released in 2001.

Class Diagram

A diagram that describes the structure of a system by showing the system’s classes and

relationships among objects.

CTV

Centrifugal Trane Vacuum

x

Design Special

A special option that is not offered through standard configuration. A sales associate can

request these from a manufacturing location, which determines design costs and provides

special pricing authorization.

Entity Relationship (ER) Diagram

A data modeling technique that gives a graphical representation of entities and their

relationships to each other.

Graphical User Interface (GUI)

A type of user interface that allows users to interact with electronic devices with images

rather than typing commands as text.

Gray-Box Testing

A combination of white and black box testing, which searches for defects due to

improper structure or usage.

Issue

A problem that occurs in the design of a chiller.

Iterative

A software development process model in which a set of activities are performed again

and again, converging toward some goal.

xi

K001

An individual chiller for an order.

MDI

Manage Daily for Improvement

Microsoft Access

A database management system from Microsoft.

Microsoft Excel

A spreadsheet application that was developed by Microsoft. It was originally released in

1985.

Object-Oriented Programming

A programming model that represents concepts as objects that have data fields

(attributes) and associated procedures (methods).

Order Number

An individual chiller order.

Special

A chiller feature that is not part of the standard chiller offering.

xii

SQL Server

A relational database management system developed and marketed by Microsoft. Its

primary query language is Transact-SQL, an implementation of the ANSI/ISO standard

Structured Query Language (SQL).

Third Normal Form (3NF)

A type of database normalization that minimizes the duplication of data.

Unit Test

Testing a small piece of the application by isolating it from the remainder of the code to

ensure correctness before integrating it with the rest of the system.

Visual Studio

An Integrated Development Environment from Microsoft.

Waterfall

A software development process model in which the life cycle is broken up into phases of

distinct activities. These activities are performed to completion and are not expected to

be performed again once the phase is over. A traditional process may be broken up into

the following phases: Requirements, Analysis, Design, Code, Integration, and Testing.

Windows Forms

The graphical application programming interface included in the Microsoft .NET

Framework, providing access to native Microsoft Windows interface elements.

1

1. Introduction

1.1 Background of CTV Design Specials – The Process

Trane, a subsidiary of Ingersoll Rand, is a global provider of heating, ventilating, and

air conditioning systems. They provide high-performance and energy efficient systems to

buildings of any size, from small homes to large industrial buildings. Chillers are a

product offered by Trane and come in many different sizes and configurations. They are

used in air conditioning systems to cool and dehumidify air.

A Centravac (CTV) is a high-efficiency Trane chiller manufactured in La Crosse, WI.

There are many different options available, but the pre-configured units do not meet all

customer requests. Special order chillers are chillers that are not included in Trane’s

standard offerings due to unique customer needs. There is a specific team, CTV Design

Specials, which handles these types of orders for Centravac chillers. The CTV Design

Specials team is responsible for a special order from the initial customer request to the

completion of manufacturing and installation. They track the special orders through four

stages: Pre-Order, Pre-Schedule Release, Pre-Order Shear, and Execute/Follow-Up. Not

all orders make it through all four stages of development as the order may be cancelled or

it may be found that the configuration is not possible.

The first stage, Pre-Order, is the quoting stage. A chiller enters into this phase when a

customer makes a request that is not a standard offering. During this phase, the potential

order is reviewed and a quote is sent to the customer. If the customer approves the quote,

the chiller is moved to the Pre-Schedule Release stage.

Before production can be scheduled and started, the design work must be done, which

is the bulk of the Pre-Schedule Release stage. Many issues can arise in this stage, for

example waiting on a third party or discovering design problems. If the design can be

completed, the chiller is moved to the Pre-Order Shear stage.

The Pre-Order Shear stage is for manufacturing preparation. The process

documentation is developed and the shear date is set. The shear date is the day in which

2

the first part for the chiller is cut. In order to set a shear date the manufacturing team

must be sure that all preparation is done so the factory has all of the necessary

information to produce the special order chiller.

When an order is moved to the Execute/Follow-Up stage, the chiller has already gone

through production. This stage is simply used to document lessons learned and what

should be changed or kept the same if this type of special order is received again in the

future.

1.2 Background of CTV Design Specials – The Software

The CTV Design Specials software has been in development since June 2012. It was

intended to assist the CTV Design Specials team in tracking special orders. Its initial

launch was planned for August 2012, but due to growing requirements, loss of a

programming intern, and other projects the deadline was extended. Unfortunately, during

that extension period, the project was cancelled by company executives who decided that

Design Special teams throughout the company needed to standardize their process,

instead of each team having their own system. However, the product owner requested

that the project be finished in case they were allowed to use it in the future.

The original program has the functionality to move an order through all four stages,

referred to as “Gates”. An order can be moved back to a previous gate, rejected, or

archived for later use. Gates 1 through 3 have a series of review fields consisting of a

route, comment, status, and approval.

While the review fields are common between each of the first three gates, they each

have unique fields and functionalities as well. For example, Gate 2 allows orders to be

prioritized. Changes in priority are tracked by the system in case they need to be

reviewed. Gate 2 also has a “review status”, which can hold one of several different

values. The functionality of the review fields in Gate 2 is based off of this review status.

For example, if the review status is “N/A” the review fields cannot be changed since they

are not necessary.

3

Gate 3 is unique in that the status of the review fields is based off of a shear date and

cannot be controlled by users. Each field has a certain number of days before the shear

date that it will turn yellow and a certain number of days until it will turn red, if it is not

marked approved.

Gate 4 is different than the other three because it is for feedback only. It contains issue

fields, which allow comments to be associated with certain steps of the design process.

The transition between gates involves various state transitions. An order in Gate 1 can

either be archived, rejected, completed. If an order is archived or rejected it is moved

into the archive and marked as being incomplete. If an order is rejected it is specifically

marked. A user can restore an archived or rejected order at any time. When an order is

completed in Gate 1, unless the user specifies differently, the order is moved directly to

archive. This is because Gate 1 is the quoting stage and many orders do not make it into

Gate 2. When a user wishes to move an order from Gate 1 to Gate 2, they can either do it

from the archive or from Gate 2. From Gates 2 and 3 an order can be archived, rejected,

or completed. When an order is completed in Gate 2 it is moved directly to Gate 3 and

when an order number is completed in Gate 3 it is moved to Gate 4. An order in Gate 4

may not be removed from Gate 4. An order in any gate can be moved to a previous gate

by an administrator. The base information of the order is deleted, but approvals, routes,

and notes are saved for when the order returns to the gate it was moved from.

The current program also has several other maintenance features that are restricted to

administrator access. These features include adding and editing users, adding and editing

special or issue categories, and viewing the history of prioritizing in Gate 2.

1.3 Need for Reengineering

The original program was designed by the author and was not part of this capstone

project. Throughout the process of the original program’s design, additional requirements

were added almost weekly. While this may not have been an issue for experienced

developers, the author still had much to learn about software design and engineering,

4

resulting in a disappointing final product. Following the original program’s completion,

additional functionalities were needed, as well as a restructuring of code and database

design. The author proposed a system overhaul to the product owner with the goals of

increasing overall speed and efficiency, creating a positive user experience, and

increasing future maintainability. The product owner approved the changes. Several

additional functionalities were identified:

 An MDI Board must be added for Gate 3 shop documentation.

 “Issue” fields need to be added for review fields in the MDI Board.

 Each time any part of an order is late, users will be forced to choose a reason

for the order being late.

 Users must be able to choose an existing issue or add a new one.

 Based off of the issue field, a Pareto chart must be generated to show where the

most common issues lie.

 Users must have the ability to use the data from an existing order as a template

for a new order.

 Users must be able to search for a K001, order number, or job name.

 The program must generate history reports for a K001 or order number.

 Administrators must have the ability to delete an order in any gate.

 The program must run on a large touchscreen computer as well as a users’

individual workstation.

 Additional charts and reports.

The overall goal of the project was to create a system that could go above and beyond

what the whiteboards could do by making users’ jobs easier and reducing extra steps

needed to create reports and transfer data from computer to whiteboard. The system

needed to have good performance and be maintainable for other interns who would be

making changes in the future.

5

2. Software Lifecycle Models

2.1 Models Considered

Three life cycle models were considered during the planning for this project: agile,

iterative, and waterfall. Agile was not highly examined for the reengineering portion, but

the author recognized that it would have been a good choice for the initial design and

implementation, since requirements changed frequently. The author initially decided on

the waterfall approach, but the project’s advisor pointed to iterative, due to the concern of

changing requirements. However, shortly into the design of the project, it was discovered

that the program would no longer be used by the company. The requirements became

static since the project manager was no longer involved. Due to the stable nature of the

requirements the waterfall model was ultimately chosen.

2.2 Model Used - Waterfall

The waterfall model is a linear sequence of phases, in which one phase does not

begin until the previous phase ends. If a change is required in a later stage, that change

should be backtracked to previous phases, all the way to the initial requirements phase

[2]. Due to the nature of completing the project in distinct phases, the customer is

involved only in the beginning of the project, when requirements are being gathered, and

at the end during user-acceptance testing [2].

6

Figure 1: Waterfall Model [4]

There are several known advantages and disadvantages of using the waterfall

model. Two advantages that were observed throughout the course of this project are

careful and precise project planning and complete documentation [2]. These two aspects

made the implementation stage easier and allowed for limited reworking. A disadvantage

of the model that was encountered is that it can take an extended time frame to finish a

project, which is generally not acceptable in the software industry today [2]. The

reengineering of this project took approximately one year to complete. While this

worked well for the author’s needs, if the final product were actually being used the

project manager would not have approved of waiting until the end to view the product.

Another disadvantage, seen in the first attempt at the project, is that project planning is

conducted in the early stages of the lifecycle, when only limited insight into the project is

available [2]. It is easy to see that using the waterfall model in the first attempt at the

project would not have been successful.

7

The waterfall model was decided upon because the author had a complete

understanding of the requirements to be implemented. Since the project was no longer

going to be used no additional requirements would be added, so completing the

requirements and design stages without going back forth would not be a problem. In the

requirements and design phases a true waterfall model was followed. Design was not

started until the requirements were complete and implementation was not started until the

design was complete. However, in the implementation phase a more iterative approach

was introduced. The database and stored procedures were designed and then a brief

testing phase was completed before code implementation was initiated. The object

classes were then created, followed by another testing phase before any database or GUI

interactions were integrated. Then, at the end, all three pieces were integrated and final

verification took place.

8

3. Functional Requirements

Requirements were gathered for the original system over the course of a year. Initial

requirements were given by the product owner, Craig, in an introductory meeting. There

were weekly meetings after that, in which Craig would add additional requirements each

time. He would also tune up any previous requirements that were given.

More user-oriented requirements were gathered by attending meetings of the Design

Specials team to watch how they interacted with the current whiteboards. The author was

able to see what additional requirements were needed and how the interface could be

designed in a way that would be the most useful for the users.

Additional requirements that were to be implemented in the reengineered program

were given in a large meeting with Craig and the owners of each of the four gates. Each

gate owner was given several weeks to go through the original program and decide what

else was needed.

The system’s requirements were detailed in the requirements document, which

complies with IEEE standards [1, 5]. The document explains the purpose and scope of

the project, describes user characteristics, system constraints, and assumptions, and

includes 82 functional requirements. The following list gives an overview of the

functional requirements:

 A new K001 can be added to Gate 1 and a new order number can be added to

Gate 2

 An active K001 or order number in any gate can be modified

 A K001 or order number in any gate can be deleted by an administrator

 A K001 or order number in Gates 1-3 can be rejected/restored or

archived/reactivated

 An order number in any Gate can be sent back to a previous gate without losing

any approvals or notes

 A completed K001 will be moved to the archive, unless otherwise specified

 A K001 can be associated with an active order number

9

 A completed order number in Gate 2 will be automatically moved to Gate 3

 A completed order number in Gate 3 will be automatically moved to Gate 4

 Approvals can be added to any active K001 or order number in Gates 1-3

 An approval of an active K001 or order number can be modified

 An approval that is not required can be deleted from an active K001 or order

number

 An approval of an active K001 or order number can be routed to an active user

 A note can be added to an approval of an active K001 or order number

 A note can be edited/deleted by the original creator

 Specials can be added to any active order number in the MDI Board

 A special of an active order number can be modified

 Issues can be added to an active order number in Gate 4 or an issue of an active

order number in the MDI board

 An issue can be modified or deleted

 Any number of notes can be added to an issue of an active order number

 A user must be able to search for a K001 or order number by K001 ID, order

number ID, description, or job name

 Order numbers in Gate 2 can be prioritized by any user

 Prioritizations are saved to the database and have a reporting function available

 Users can view which active items have been routed to them

 Reports of various data must be available

 Users can log in and out of the system and must be logged in to make changes

 There must be two user roles: regular and administrator. Administrators must

provide a password to access functions requiring advanced permissions.

 Administrators can add/edit/deactivate users

 Administrators can add/edit/deactivate special categories and issue categories

 Administrators can define which approval types are required for all gates

10

 A startup screen must give a high-level overview of what is contained in each

gate

Figure 2 below shows two functional requirements taken from the requirements

document.

Figure 2: Functional Requirements

Each requirement has a unique index, which can be traced back to the corresponding

section of the requirements document. The name and purpose describe how the

requirement will be used and input parameters are listed. A high-level overview of the

steps that need to be taken to complete the requirement are specified and output

parameters are shown. Exceptions that may occur during the function’s execution are

11

described and any additional information that is helpful to understanding the requirement

is included. Any relationships to other functional requirements are also specified.

The system also has several non-functional requirements, the most important being

usability. Since a goal of the system is to be a more advanced version of the whiteboards,

the team must be able to complete their tasks quickly and efficiently through quick

database accesses and frequently updated data. The system also needs to be usable from

a touchscreen, as well as users’ individual workstations, meaning users must be able to

access the system concurrently, without duplicating data or encountering errors. The

system must be secure in order to preserve data integrity and confidential company

information through passwords and restricted folder access. Lastly, the system needs to

be maintainable, since its upkeep will be the responsibility of interns who only remain in

the position for one or two years at a time.

12

4. Design

Since the bulk of the requirements were gathered in the initial phase of the project,

the design phase came relatively quickly. The design is based on an object-oriented

approach and included the use of a class diagram, component diagram, and entity

relationship diagram. The following section explains the tools and techniques used

throughout the design phase.

4.1 Database

Since CTV Design Specials is data-oriented, the database design naturally came first.

The database was initially going to be designed in Microsoft Access 2010. This was due

to the author’s position in the company at the time as a Business Tools Software Intern,

which is a position responsible for developing and maintaining small applications for

internal use. Using anything other than Microsoft Access would have caused the

company to classify the program as a software project, rather than a tool, and give it to a

software development team overseas. However, once it was discovered that the program

was no longer needed, it was decided that SQL Server 2012 would be used, rather than

Microsoft Access. This decision was made for several reasons. First, SQL Server is

more widely used in the software industry than Microsoft Access, so it would be good

experience. Second, SQL Server is a more robust choice for overall database

management. It is said to handle simultaneous access better than Microsoft Access and

has better database administration tools.

One goal, when designing the entity relationship diagram, was ending with a database

in third normal form. The database for the first version of the project was not in third

normal form and, therefore, contained redundant data, larger tables, and slower queries.

The new database, which is in third normal form except for three tables used to populate

dropdown lists, has increased performance and is easier to use overall. Figure 3 shows

the resulting entity relationship diagram.

13

Figure 3: Entity Relationship Diagram

As shown in the entity relationship diagram, there are 28 tables, some responsible for

holding data and others responsible for reducing redundancy.

In case the project is needed in the future, all database queries are written as stored

procedures within SQL Server. That way, if the program did need to use Microsoft

Access, there would not be a large code change required. Using stored procedures also

made for cleaner, more readable code. There are 115 stored procedures, each written to

retrieve only the necessary data in the quickest way possible, by delaying joins between

tables.

14

4.2 Class Structure

Since CTV Design Specials is a data-oriented application, the class structure was

inferred from the entity relationship diagram (Figure 3). The class diagram can be seen

in Figure 4 below (detailed classes are shown in Appendix B) and detailed definitions of

the 18 classes can be seen in the design document [3].

Figure 4: Class Diagram

As the diagram shows, the order number and K001 classes are the main parts of the

system, which is fitting because they are also the central portions of the business logic.

K001, OrderNumberG2, and OrderNumberG3 all inherit from Order. The various K001

and order number classes also contain approvals, issues, specials, and notes. The Order

class can be seen in Figure 5, with a portion of the class narrative in Figure 6.

15

Figure 5: Order Class

Since K001s and order numbers in Gates 2 and 3 inherit from the Order class, most of

their details can be seen in Figure 5. The design document goes into further details with

class definitions for each class, an example of which can be seen in Figure 6.

16

Figure 6: Portion of Order Class Narrative

Between the class diagram and class narratives, the developer is given the information

they need to implement the class. For the Order class, each order has a unique identifier.

Since order numbers are moved from Gate 2 to Gate 3, the identifiers are repeated across

gates. Users must be able to see the history of a K001 or order number, so the Order

class also contains attributes to track if and when they have been added, archived, or

rejected. Gates 1 through 3 all have a final review field and a list of required approvals.

The required approvals are different across gates. A K001 or order number can also have

any number of additional, or extra, approvals. The “action” attribute is not part of the

business logic, but is used to indicate whether the order is being added, modified, or

deleted so the proper database updates can be made.

17

A few other helper-type classes exist in the system, but are not shown in the diagram,

such as a database interfaces, a utility class, and report utility classes. The point of these

classes is to keep other parts of the system from having to directly interact with the

database or reports.

4.3 Reports

Reporting is done in Microsoft Excel. This decision was made based on the tools

offered by the company and the users’ preference to have data in Excel where they can

manipulate it as needed. Most of the reporting is available to all users and gives

information on a K001 or order number. For example, users can choose a K001 and see

which order numbers are tied to that K001, which gates they have gone through and

when. There is one report that is available to administrators only. It allows them to see

how users have prioritized order numbers in Gate 2. This is to protect against a single

user repeatedly prioritizing their orders above all others.

4.4 System Security

Security is not generally viewed as a concern with these types of small programs at

Trane. They are usually stored on a server, where anyone with access to the server can

access them. This is because gaining access to a folder can take several days and most

users wish to avoid this. However, a few extra security measures were decided upon for

this piece of software. First, the database and all needed files were placed in a folder

where only members of the Design Specials and related teams have access. Since that

did not restrict access enough, a password was added to the database as well as

usernames to the program. The program uses the environment username to see if that

user has access to the system. If they do, they are automatically logged in. Otherwise,

they can view data, but are not allowed to make any changes. There is also a log in

option, which was to be used on the touchscreen, since it was not going to have any

specific user logged in. Passwords were discussed, since anyone could use the login

option to type someone else’s username, but the project manager did not think it was

18

necessary and did not want users to have to remember a password. As the design

addressed, the program has an administrative role, which requires a password. An

administrator can do anything that a regular user can do, but they also have maintenance

options available, which include adding, editing, or deleting users or different pieces of

data as well as viewing advanced reports. This password is the same for every user, but

is only given to the administrators.

19

5. Implementation

Due to the level of detail given in the design phase, the implementation phase

proceeded quickly.

Since the user interface was a portion that would be widely reused from the previous

version, that design came first. While nothing was directly used, the overall look and feel

was kept the same. Changes were made based on user feedback from the original

software. Figure 7 below shows a screen used to allow users create a report as seen in

the old software versus the new software. Additional comparisons between the new and

old GUI can be seen in Appendix A.

Figure 7: Report Prioritize Records Screen – Before and After

The GUI was designed using Windows Forms in Visual Studio 2013, with C# as the

code running and connecting the GUI, database, and business layers. Visual Studio and

C# were chosen for an opportunity to learn more about their features and to make

maintenance easier for future interns.

The database was created based on the entity relationship diagram and the classes were

written based on the class diagram and definitions contained in the design document [3].

The largest challenge in the implementation phase was creating the charts and reports as

the programmer was unfamiliar with the technology.

20

6. Validation and Testing

Since the program is no longer being used and the programmer had since accepted a

new position in the company, the testing was left up to the programmer, which is not

ideal.

The testing did not follow the typical waterfall approach, as it was done as each

component was added to the system. Since the database and stored procedures were

completed first, each stored procedure was tested separately to ensure the expected

information was being retrieved and modified. Methods were written in separate

database interfacing classes to access each stored procedure.

Next came the GUI, without any data connections. After the GUI was developed and

wired up, the programmer tested to ensure that each button caused the correct action and

that no data could be saved with missing or invalid entries.

After GUI development came the object classes. The classes were tested as they were

designed in the design phase. After they were all fully written, unit tests were created to

check the error handling and functionality of each method in each class.

Next it was time to integrate the separate pieces. As different portions were added,

they were lightly tested to uncover any obvious mistakes. After everything was put

together, gray-box testing was performed for each functional requirement. Gray-box

testing is a combination of black-box and white-box testing, in which the requirements

are used to create test results, but the internal structure of the code is also known. Any

issues that were uncovered were fixed and tested again. After all tests passed, they were

ran once more to insure nothing was broken as issues were being fixed. Table 1 shows an

example of a test case, in which changes to approval statuses in Gate 3 were checked

against changes in the shear date.

21

Table 1: Test Case for Gate 3 Status Changes for Change in Shear Date

The table above does not show the last two columns, which are “Actual Results” and

“Pass/Fail”.

If the program were to be used, usability and user acceptance testing would have also

been performed by the product owner and owners of the four gates. For about a month-

long period, after each of their meetings, they would have used the program to enter the

same data that they entered on the current whiteboards to make sure everything was up to

their standards and would be easy for everybody to use. However, since that was not an

option, the programmer did their best to navigate the system with the mindset of a user

and make any changes that would benefit usability.

Test Id Purpose Requirements Steps Expected Result

Open an active Gate 3 order

number

Order number data is loaded to

form

Unapprove all required

approvals

Required approvals should not

be marked as approved

Change the shear date to the

current date

All required approvals should

have a red status

Change the shear date to one

day past the current date
No change in approval status

1. The steps and expected results

assume the following about the

required approval types:

Change the shear date to two

days past the current date

Programs status should change

to yellow, no other changes

Process Design: 13 days to yellow, 11

to red

Change the shear date to four

days past the current date

Programs status should change

to white, no other changes

Material: 12 days to yellow, 10 to red
Change the shear date to six

days past the current date

Shop Documentation status

should change to yellow, no

other changes

Shop Documentation: 7 Days to

yellow, 5 to red

Change the shear date to 8

days past the current date

Shop Documentation status

should change to white, no other

changes

Programs: 3 days to yellow, 1 to red
Change the shear date to 11

days past the current date

Material status should change to

yellow, no other changes

Change the shear date to 12

days past the current date

Process Design status should

change to yellow, no other

changes

Change the shear date to 13

days past the current date

Material status should change to

white, no other changes

Change the shear date to 14

days past the current date

Process Design status should

change to white no other

changes

G3001

To ensure the status dates

for approvals change as

they should when the

shear date is changed

22

7. Result of Reengineering

The reengineering of the system was a success. The system has a better overall

structure, with increased usability, performance, and ease of maintenance. While none of

the code was reused, the overall system structure, database structure, and GUI design

were reused and improved.

The old version of the software contained seven classes, only four of which were used

to store data objects, which meant that a lot of the code that should have been in a

business layer was instead integrated with GUI, making code hard to read and make

changes difficult to make. The reengineered software contains 12 database interface

classes, 1 utility class, 4 various reporting utility classes, and 17 object model classes

(Appendix B), none of which access any of the GUI code. These classes are more

readable and flexible, making the system easier to understand.

The reengineering of the database and its access methods also created drastic

improvement. The old database contained 12 poorly structured tables. Instead of having

separate tables for approvals, routes, and order numbers, these were all attributes in larger

tables, meaning that an order number could have a finite number of approvals, all notes

were stored in one field, and only one route was allowed per approval. The new database

contains 29 tables with no duplicated data. These tables allow an order number or K001

to have any number of approvals, an approval to have any number of notes and routes,

and so on. The database queries were moved from the code to the database, as stored

procedures, and were optimized to increase speed and only retrieve the necessary data.

These changes gave the system a large performance boost.

The GUI was heavily based of off the old one. The largest changes were made to the

content on each screen. Instead of fitting everything needed for a K001 or order number

on one screen, they are split into separate screens to help the user see what exactly is

needed for the task they are trying to accomplish. Comparisons between the new and old

GUI can be seen in Appendix A.

23

The reengineering was an overall success. The good parts of the old system were

reused and improved upon and the poorly designed portions were redone for improved

performance, usability, and code readability.

24

8. Conclusion

The creation of this system was a great learning experience. The author was able to

experience the challenges and benefits of closely following a software lifecycle model,

while also feeling the disappointment of a project being discontinued. While having the

patience to complete all documentation before starting implementation, as dictated by the

waterfall model, was a challenge, it was a great benefit in the end, making the

implementation portion go smoothly.

The original goals of the project would have been met with this system, had it been

used. The system would allow users to do everything they were previously able to do,

and more. They would have all of their data in once place and could easily view current

data as well as looking at past data. All of their reports would have been in once place

and they could have accessed everything from the comfort of their own desk.

8.1 Challenges

Multiple challenges were overcome in the process of this system design. The largest

of those challenges came when the project owner was told that he was no longer to use

the system. Since the author had not gathered enough understanding of some of the new

requirements, the project manager had to be kept involved long enough to gather

sufficient information.

A smaller challenge was changing requirements, which still occurred, even after the

project owner was out of the picture. This was the fault of the author, for not looking

back in old notes prior to starting the project. This made it necessary to backtrack

through all stages of the waterfall model to accommodate for the rediscovered

requirements.

A challenge also arose when it was time to start allowing order numbers and K001s to

be added and edited. Several different screens can be opened, while editing either an

order number or a K001. For example, if the user wants to add a new approval, they

open a form to enter the information of a new approval, from which they can also open

additional forms to add notes or routes. At first the programmer made temporary records

25

for approvals, notes, and routes when this was done so the data could be saved and passed

back or deleted, if necessary. However, that caused a very slight pause when closing

each form while the information was being saved to the database. When looking for a

solution, the programmer found that data could be passed between forms through public

methods, so if a change was made that data could be retrieved and marked as being

added, modified, or deleted so that all of the data could be saved at once, at the end of the

edit.

A database-related challenge that arose was related to having multiple users accessing

the system at the same time. One major goal of this system was to allow users to be able

to make changes from their desks instead of having to walk, or in some cases travel from

different buildings, to get to the main board. This brought the possibility of users not

seeing up-to-date data or creating duplicate information in the system. This issue was

solved by making sure data was refreshed after each major action (saving or closing a

form), which guaranteed that the user was seeing the most up-to-date information. To

protect against duplicate information being added, database constraints were used to

avoid having duplicate order numbers, the same approval for an order number, etc. A

message is shown saying that the information had already been added and they will not

be allowed to add it again.

A positive challenge was learning to interface with Excel through C# to create charts

and reports. The same can be said for the charts shown in the interface of the program.

The programmer did not have any experience with charts or reports, so there was a

learning curve involved. The skills and techniques discovered will be useful in future

projects.

8.2 Future Work

It is not likely that any future work will take place, since this program will not likely

be needed in the future. However, the idea of it may be used in the author’s current

position at Trane because a Manage Daily for Improvement (MDI) Board is being

26

considered. The CTV Design Specials system could be used as a framework and the MDI

Board portion could be abstracted out and used as a generic MDI Board template.

27

9. Bibliography

[1] IEEE Guide to Software Requirement Specifications, New York, IEEE 1998.

ANSI/IEEE Std. 830-1998.

[2] L. A. Maciaszek and B. L. Liong, “Lifecycle Models” in Practical Software

Engineering: A Case Study Approach. Harlow, England: Pearson Education Limited,

2005, ch 1, sec. 1.3.1, pp. 22-24.

[3] Miller, Krista. “Design Document for CTV Design Specials”, Version 1.1, April

2014.

[4] J. Rossberg and M. Olausson, “Development Processes and Frameworks,” in Pro

Application Lifecycle Management with Visual Studio 2012, 2nd ed. Dordrecht:

Springer, 2012, ch. 3, pp. 38.

[5] Schultz, Krista. “Software Requirements Document for CTV Design Specials”, July

2013.

28

Appendix A: GUI Before and After

Entry Screen (Before)

29

Entry Screen (After)

30

Main Screen (Before)

31

Main Screen (After)

32

Gate 1 Add/Edit (Before)

33

Gate 1 Add/Edit (After)

34

Gate 2 Add/Edit (Before)

35

Gate 2 Add/Edit (After)

36

Gate 3 Edit (Before)

37

Gate 3 Edit (After)

38

Gate 4 Edit (Before)

39

Gate 4 Edit (After)

40

Approval (After – Previously on same screen as Gate 1-3 Add/Edit)

Route (After – Previously on same screen as Gate 1-3 Add/Edit)

41

Issue (After – Previously on same screen as Gate 4 Edit)

42

Notes (Before)

43

Notes (After)

44

Prioritize (Before)

45

Prioritize (After)

46

Maintenance (Before)

Maintenance (After)

47

Create Priority Report (Before)

Create Priority Report (After)

48

Add User (Before)

Add User (After)

49

Edit User (Before)

Edit User (After)

50

View Routes (Before)

51

View Routes (After)

52

Login (Before)

Login (After)

53

Appendix B: Internal Class Structure

All classes have an implied constructor that takes initial inputs, set methods for private

variables, and get methods for all variables.

54

55

56

57

